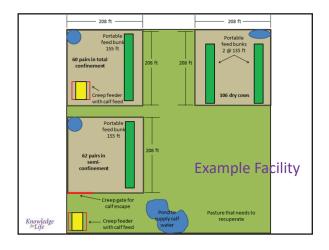


K-STATE Research and Extension Ence	ergy supplementation
 Starchy feeds will cause substitution Corn, milo, wheat Alternative digestible fiber energy sources good energy source that might eliminate substitution effects Soybean hulls, wheat midds, corn gluten feed 	 Oklahoma research (Cravey et al., 1994) Corn-based supplement fed at 0.7-1% of BW resulted in a 1:1 substitution rate Led to 33% increase in stocking rate
Knowledge MLife	No Supplement Supplement Forage Supplement

K-STATE Research and Extension	Substituting c	one for another
Feed	TDN %	CP %
Corn	88	9.8
Oats	73	13.6
Milo	85	11.3
Wheat	76	11.6
Stockpiled fescue	60	11.0
Corn silage	69	8.5
Alfalfa, bloom	55	17.0
Dormant native	40	2.5
Prairie hay - mature	56	5.0
1 lb of corn offers 0.88 1 lb of prairie hay offer For each pound of corn have the same energy a Knowledge #Life	s 0.56 lb T 80 you can fe 40 und will hav 0	plement Supplement

earch and Extension	Pricing
Mature Brome Hay @ \$150/ton	Alfalfa Hay @ \$260/ton
• 0.87 Mcal/lb ME	• 0.99 Mcal/Ib ME
 \$150/ton ÷ 2000 = \$0.075/lb	• \$260/ton ÷ 2000 = \$0.13/lb
as-is	as-is
 \$0.075/lb as-is ÷ 0.926 DM =	 \$0.13/lb as-is ÷ 0.906 DM =
\$0.08/lb DM	\$0.14/lb DM
 \$0.08/lb DM ÷ 0.87 Mcal/lb =	• \$0.14/lb DM ÷ 0.99 Mcal/lb
\$0.093/Mcal_DM	=
	\$0.144/Mcal DM



TOtal mixed rations Silage, corn, straw/stalks, distillers grains High density diets so need to reduce the amount offered to meet, not exceed requirements Safely can reduce intake to 1.7% of body weight on DM basis if going back to grass 1300 lb cows x 0.017 = 22.1 lbs DM if ration is 50% DM then feed 44.2 pounds of ration

K-STATE Research and Extension	Facilities and Health
 Do you have somev – Feedlot 	where to go with the cows?
 – Sacrificed a portion – Dry-lot 	of pasture
 Does the place have water? 	e abundant, easily assessed
 Do you have a Heal calves? 	th protocol for cows and

Knowledge ^{for}Life

Farney, J. K., S. Johnson, C. Reinhardt, G. Tonsor, and J. Petersilie. 2014. MF-3115. Managing cows in a Confinement Situation. Kansas State University, August. <u>https://www.bookstore.ksre.ksu.edu/pubs/MF3115.pdf</u> Farney, J. K., S. Johnson, C. Reinhardt, G. Tonsor, and J. Petersilie. 2014. MF-3114. Decision Tree. Options for Management of Cows and Calves during Drought. Kansas State University, August. <u>https://www.bookstore.ksre.ksu.edu/pubs/MF3114.pdf</u>

Knowledge ^{pr}Life

Confinement Feeding Production Cows: The Art and the Science

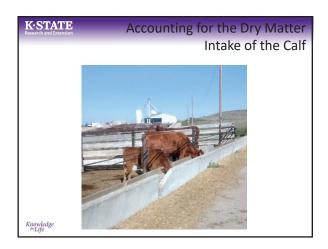
Karla H. Jenkins, Shelby Gardine, Jason Warner, Terry Klopfenstein, Rick Rasby

> Nebraska Lincoln EXTENSION

Knowledge forLife

	by Aaron Berger, B cator in the Panhan
Price Per Pair Per Month	Price Per Ton Equivalent
\$30	\$50
\$35	\$58
\$40	\$67
\$45	\$75
\$50	\$83

Gestation w/o la intake 1200 lb c		1 ID OF IDN,	2 lb of protei	n, 1.8% DM
Commodity	DM, lb	As is lb	Cost/ton	Cost of Diet
straw, 45% TDN	18	20.5	85	.87
WDGS, 108% TDN	3	8.6	50	.21
				64 00/I
actation diat	o dav old i		N 2 75 lb pr	\$1.08/d
intake same cow	/	calf, 16 lb TI	0N, 2.75 lb pr 85	•
Lactation diet, 6 intake same cow straw, 45% TDN WDGS, 108% TDN	/			otein, 2.2% DA
intake same cow straw, 45% TDN WDGS, 108%	20 4	22.7	85	otein, 2.2% DA


K-STATE Limit Feeding Confinement Cows
Data from UNL suggests:
 Energy dense by products can be mixed with low quality crop residues
 Dry matter intake can be limited
 Cow condition can be maintained because nutrient needs are being met
Knowledge In Life

K-STATE lesearch and Extension	Ge	Gestating Cow Performan			
ltem	20% Pulp	45% Pulp	SE	P value	
Initial BW, Ib	1202	1196	27.0	0.86	
Initial BCS	5.2	5.2	0.13	0.79	
Final BW, lb	1307	1310	24.9	0.92	
Final BCS	5.6	5.7	0.08	0.20	
BW change, lb	105	115	9.9	0.50	
BCS change	0.4	0.5	0.12	0.57	
	20% distiller i	n all diets - rest is	wheat straw		

Exercised and Exercise Sector Secto

Gestating Cow Performance			
ALF HAY	WDGS STRAW	P value	
1094	1089	0.86	
5.5	5.4	0.74	
1238	1256	0.53	
5.8	5.8	1.00	
+144	+167	0.01	
+0.34	+0.39	0.66	
81.8	81.6	0.96	
	ALF HAY 1094 5.5 1238 5.8 +144 +0.34	ALF HAY WDGS STRAW 1094 1089 5.5 5.4 1238 1256 5.8 5.8 +144 +167 +0.34 +0.39	

	Mineral Supplement
	l always be added to high diets due to the Phosphorus illers grains
provided as we	and Vitamins should be Il preferably in the mix and feeding free choice mineral
0	s over consume

Diet (DM	Ingredients	Late	Lactating	Cow with
ratio)		Gestation	Cow	60 d old
		Cow		calf
		Dry	matter intak	te, lb
57:43	Distillers grains:straw	15.0	18.0	20.0
30:70	Distillers grains:straw	19.2	23.0	25.6
40:20:40	Distillers grains:straw: silage	15.4	18.5	20.6
20:35:45	Distillers grains:straw: beet pulp	14.6	17.5	19.4

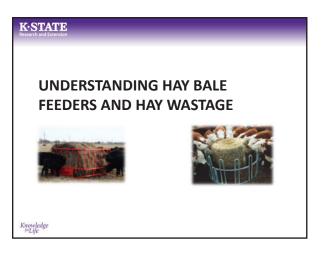

K-STATE Research and Extension

Lessons Learned from Total Confinement

- Pairs can be maintained in total confinement, although it is rarely the least expensive system
- Using the most inexpensive commodities is important
- Limit feeding cows energy dense diets maintains cows - calves may need additional feed resources
- Early weaning may be a useful management tool

Knowledge forLife

		Access Time, h	(P-Value	
Item	6	14	24	24 h vs. restricted	14 vs. 6 h access
DMI, Ib	21.2	24.4	27.4	< 0.0001	< 0.01
Hay waste, b*	0.8	4.2	7.7	<0.0001	0.0026
BW change, b	27.3	36.5	51.2	0.051	> 0.10
Expressed as a Adapted from J		l., 2011			


em	6 hr	24 hr	Difference, %
ıy DM intake, lb	23.1	29	22.6
y DM waste, %	13.4	21.2	44.2
w BW change, lb	109.8	142.1	28.3
Limit feeding Acceptable per Decreased DMI	rformanco wastage	e	

K-STATE Research and Extension

Issues/Concerns

- Accurate estimate of ad libitum intake and determining the degree of restriction is critical
- Do not limit feed for first calf heifers or thin, older cows
- Initial cow body condition important
- Do not use with extremely low quality forage

```
Knowledge
<sup>for</sup>Life
```


	F	eeding meth	od	
Item	Roll out on ground	PTO processor	Tapered cone feeder	P- value
BW gain, lb	49.6ª	66.0 ^b	79.6 ^b	< 0.01
ADG, lb	0.84 ^a	1.19 ^b	1.35 ^b	< 0.01
Tetal aget par sour C	100.02	127.01	100.24	
Fotal cost per cow, \$	109.02	127.01	100.26	

		Feeder Typ	e	_
tem	Cone	Ring	Trailer	Cradle
Daily hay disappearance, b/cow	26.5ª	26.7ª	30.7 ^b	28.5 ^{ab}
Daily hay waste, lb/cow	0.88ª	1.54 ^b	3.53c	4.19 ^c
Hay waste, %	3.5ª	6.1 ^b	11.4 ^c	14.6 ^c
Daily hay intake, lb/cow	25.4	25.1	27.1	24.2
Intake/cow BW, %	1.8	1.8	2.0	1.8
,b,cWithin a row, least squares means wit	thout a commo	n superscript let	ter differ (P < 0	0.05).
vijedage		Burskirk	et al., 2003	H W

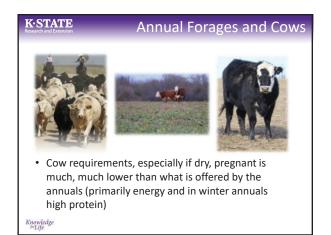
Implications

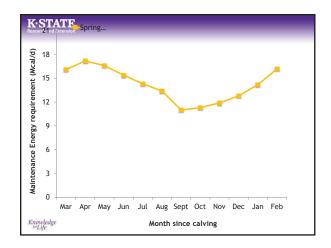
- Modified cone feeder and tapered bale feeder models most efficient design
 - Less waste = longer feeding period = less hay used
 - Cone = Ring < Trailer < Cradle</p>
- Feeder design did no affect DMI

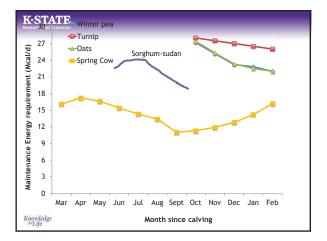
Knowledge ^{for}Life

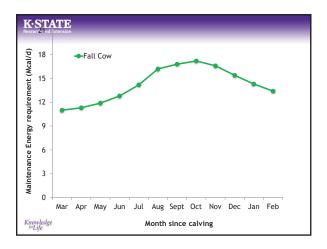
Oklahoma State Ur

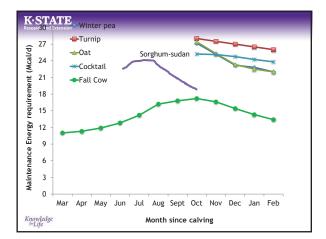
K·STATE

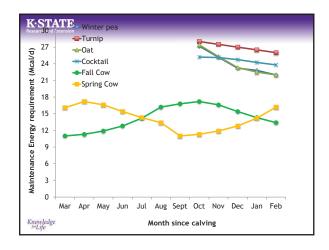

- Values back for producer
 - Assume hay costs \$120/ton and a 120-d feeding period


Hay Feeders


- Cow will eat 30 lbs/d over 120 d = 1.8 ton
 - 21% wastage = feed 2.18 tons
- 5% wastage = feed 1.89 ton
 \$261.60 cost with open bottom (21% waste)
- \$226.80 cost with modified cone (5% waste)
- \$34.80 difference per cow or \$0.29/hd/d




Species	NDF %	ADF %	Calculated TDN
Barley	40.6	13.9	79.9
Black Oats	42.0	24.0	73.3
Purple Top Turnip Bulb	_	13.8	79.9
Purple Top Turnip Leaf	17.6	10.3	82.2
Radish Bulb	18.0	14.9	79.2
Radish Leaf	20.3	12.1	81.2
Tillage Radish Bulb	14.0	12.0	81.1
Tillage Radish Leaf	22.0	18.1	77.1
Rye	33.6	12.7	80.7
Cow Pea/Soybean	36.0	16.3	78.3
Triticale	38.4	15.4	78.9
Triticale/Oats	36	14.7	79.3
Turnip/Radish/Brassica Bulb	18	10.6	82.0
Turnip/Radish/Brassica Leaf		17.7	77.4
Wheat	39.5	15.7	78.7
Winter Pea	21.6	15.7	78.7



Issues

Knowledge ^{In}Life

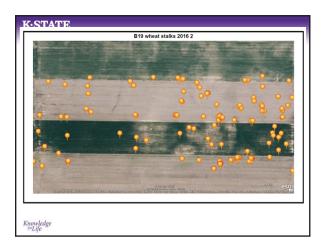
- Too much body condition
- Inefficiency in production system
- Loss of potential revenue
- Practices to manage for this:
 - Short term grazing on high quality forage
 - Combination paddock
 - Strip limit graze

Annuals and Cows

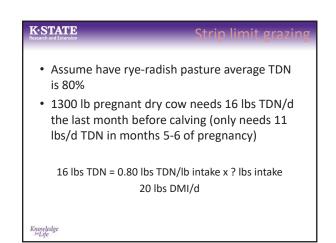
K-STATE Research and Extension

 Allow cows a couple of hours/d to graze high protein, high energy forage at least 3x/week

Limit grazing


Combination paddock

- Portion of pasture is low quality roughage or other portion is high quality annual
 - Planting corners of circles with high quality forage
 - Fencing both types of forage
 - Flying on annuals into residue??


Knowledge ^{for}Life

K-STATE How much high quality pasture need – winter annuals??

- Really for spring cows don't need anything other than corn stalks for 1st month of grazing
- If only want to fence once determine was maximal acreage is needed for the highest nutrient requirement period and multiply by days (90 d)
 - Cow needs 1.14 ac of cocktail and 1.93 ac of stalks
- Fall cows for 90 d
 - Cow needs 1.51 ac of cocktail and 2.18 ac of stalks

K-STATE Research and Extension	Strip limit grazing
~150	lbs DM/inch of growth
9 inch tall	= 1350 lbs/acre DM forage
Eat 50% s	so 675 lbs DM/ac available
20 lb DMI x	100 cows = 2000 lb DMI/day
200	0 lb ÷ 675 = 3 acres/d
If you want	to move every other day 6 ac
Ev	ery 3 rd day 9 ac , etc
Knowledge	

K-STATE Research and Extension	Sorghum Grazing
 Rotational grazing b 	pest option
 Start grazing sorg 	ghum when > 24 inches tall
– Graze until 8 inch	nes left
U 0 1	paddock should be less ptimal a couple days
– Rest time ~25 da	ys should give 24 inches
 Estimated stockir 	ng rate 5-6 AU/acre
Knowledge MLife	
Knowledge ^{brLife}	

- Sudangrass and millet grazing considerations • Rotational grazing still best option
 - -Start grazing 18 inches tall
 - -Stop grazing 8 inches tall
 - -Grazing days 7-10 days
 - -Rest period of ~21 days
 - -Estimated stocking rate 4-5 AU/acre

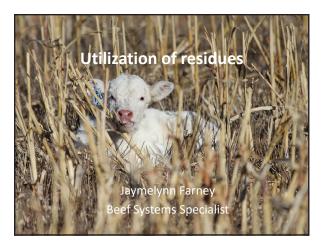
Knowledge ^{for}Life

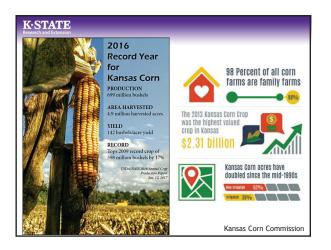
Kestate Additional information MF3244 – Forage Crops Grazing Management: Toxic Plants

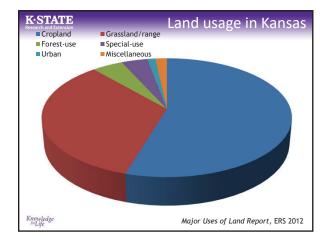
- www.bookstore.ksre.edu/pubs/MF3244
- Beef Tips May 2015
 - http://www.asi.k-state.edu/about/newsletters/beeftipsMay2015.pdf
 - "Sorghums and millets for summer forage"
 "Estimating the amount of forage available for grazing in summer annuals"
- Android and iPhone mobile app Grazing Mgmt

K-STATE Research and Extension Weaned Calves

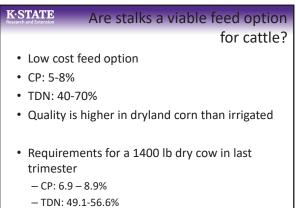
- Most of the time, we still are offering too much protein (much higher than requirements)
- Need another source of dry forage/feed
- Maximize gain potential want to make protein to energy ratio optimal
- Maximize gain = maximum dry matter intake


Knowledge ^{for}Life


K-STATE Research and Extension


Value of winter cover crops -

- Nebraska data showed that calf gains are VERY variable with cover crop mixtures
- Over 10 studies
 - -ADG ranged from 0.8 lb/d up to 2.3 lb/d
 - -Same cocktail in back-to-back years
 - 2.3 lb/d one year and 1.3 lb/d next year


earch and Extension	Calf gai	ns on cer	real grain:
Cereal type	Cattle Type	Gain	Location
Oat	Heifer	1.96	North Dakota
Barley	Heifer	1.96	North Dakota
Barley	Heifer	1.75-1.96	South Dakota
Barley	Steers	3.0	Canada
Oat	Steers	2-3.5	Canada
Rye	Steers	2.25-2.6	Canada
Triticale	Steers	1.7-2.4	Canada
Wheat	Steers	1.87	Canada
Oat-Ryegrass	Steers	3.06	Alabama
Oat-Rye-Ryegrass	Steers	2.78	Alabama
Rye-Ryegrass	Steers	2.50	Alabama
Ryegrass	Calves	1.96	Florida
Ryegrass-triticale	Calves	1.68	Florida

K-STATE Research and Extension	Obser	vations with integration
Items evaluated		Results
Winter forage supply from corn residue (Brassica rapa L. subsp. Rapa) mixtur	plus rye + oat + turnip re grown on cropland	adequate from November to January, may last longer under favorable weather; supplemental feed needed in late winter, especially for pregnant cows
Soil compaction and soil organic matter		cattle trampling on cropland caused some soil compaction, but had minimal effects on soil properties and no detrimental effect on crop yield; soil organic matter increased significantly within 5 yr of coversion from corrs-soybean rotation suggesting rapid building of soil organic matter in the integrated system
Weed biomass in system		winter grazing on crop fields suppresses weed biomass through trampling and grazing: however, presence of cover crops is just as effective in reducing weed biomass
Nutrient cycling		cattle on winter cropland concentrate nutricnts near water sources through manure deposition; thus, animal excreta may not improve overall soil fertility due to uneven redistribution of nutrients
Economic return		cattle operation in integrated system is competitive with other cattle systems used in Illinois, but there is room for improvement; total feed costs in 2004 were \$158 cow ⁻¹ , compared with the Illinois state average $>$ 5200 cow ⁻¹ ; additional inputs spent on grazing have reduced overall feed expenditures
Knowledge ^{jor} l.ife		CY: INTEGRATED CROP-LIVESTOCK SYSTEMS IN DRN BELT, 2007

Knowledge ^{for}Life

K-STA Research and Ext		-			Sta	ts fo	or	corn	resid	dues
	Corn	Sorghum						Propo	ortion, %	5
	Leaves			lte	m		- h	rrigated	Dryl	and
CP, %	5.18	6.75		Gra	ain			4.0	4.	.0
TDN, %	49.5	51.3	Leaf and husk				45.0	51	.0	
Stem		Stalk			40.0 33.0		.0			
CP, %	4.05	4.20	Co		D			11.0	12	.0
TDN, %	43.7	50.2	Cor	n	Percent DM	% CP Rang		% CP - Average	% TDN - Range	% TDN - Average
*Taylor et	al. (1999)		Grain		73	9.5-1	1.2	10.2	88-95	90
Cattlemen's Day			Leaf		76	6.2-7	.5	7.0	41-65	58
1400 lb cow 8% CP		Husk		55	3.0-4	.0	3.5	63-72	68	
		Cob	-	58	2.1-3	.8	2.8	59-65	60	
Knowledge	5 2% T C	M	Stalk		31	3.0-5	5.1	2.7	45-60	51

K-STA' Research and Ext		-		Sta	ts for	milo	o resi	due
	Corn Leaves	Sorghum	Milo	Percent DM	% CP - Range	% CP - Average	% TDN - Range	% TDN - Average
CP, %	5.18	6.75	Grain	74	10.3-11.0	10.5	85-95	90
TDN,%	49.5	51.3	Leaf	66	6.0-13.0	10.0	40-65	57
	Stem		Stalk	25	3.3-3.9	3.6	53-58	53
CP, %	4.05	4.20	STUK	25	3.3-3.9	3.0	55-56	55
TDN, %	43.7	50.2						
*Taylor et a Cattlemen'						1 400	lb cov	A.//
							GCP	70
							TDN	
Knowledge ^{Inr} Life								

K·STATE

Kansas Statistics

- 5.30 million acres corn for all purposes
- 5.15 million acres corn for grain
- State carrying capacity for cows assuming:
 - 1400 lb dry cow
 - Utilizes 50% of stalks
 - Average corn yield in KS 142 bu/ac (KSCC, 2016)
 - Graze for 90 d
 - Stocking rate 1 cow/3 ac
 - 1,716,666 cow ~ 1.7 million cows

1.6 million cows in KS \rightarrow 6.4 million cows+calves $K_{rowledge}^{rowledge}$ (USDA MASS, 2017)

K·STATE

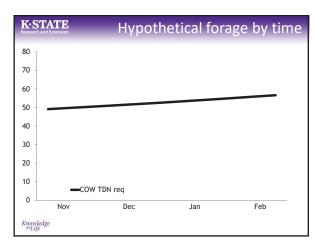
Cattle preferentially graze stalks

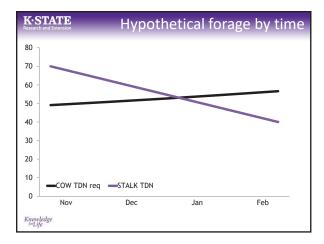
Using stalks

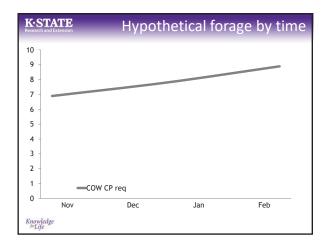
- Corn > husks = leaves > cobs > stem
- Different grazing strategies
 - Season long grazing
 - Strip grazing
 - Short duration heavy stocking

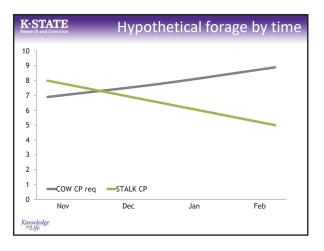
Utilization by cattle

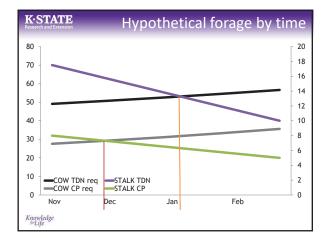
	Plant part	Dryland	Irrigated
	TOTAL		
	Leaf	50	55
	Stem	5	10
	Cob	63	50
Knowledge ^{for} Life	Grain	96	98

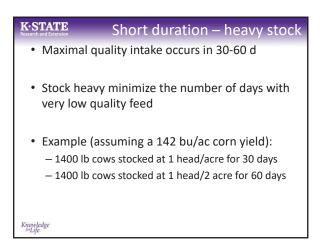

Stocking rate

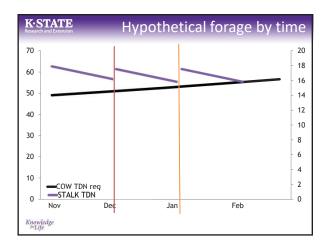

VERY important with decisions about grazing plan
Calculations:

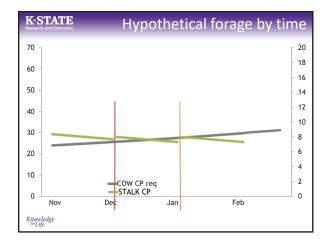

- 16 lb of husk and leaf/bu of corn
- Assume consumption of 50% of these
- 1 AU = 1000 lb cow = 702 lb DM intake monthly
- 1400 lb cow = 1.4 AU = 982.8 lb DMI monthly (1.4 x 702 lb)
- 142 bu/ac = 2272 lb husk/leaf x 50% = 1136 lb for consumption
- 1136 ÷ 982.8 = 1.16 AUM
- KESTATE Received and Extension
 Cows will do well at the start of the season, because they will have corn and leaf/husk

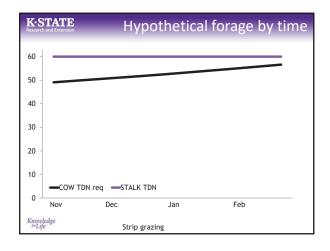

 As corn decreases left with lower quality feeds


 Many times you can stock 1400 lb cows at 1 hd/ 3 acre for 90 days and they will be fine for the first 30-45 d
 - After that need to supply a protein source to meet requirements







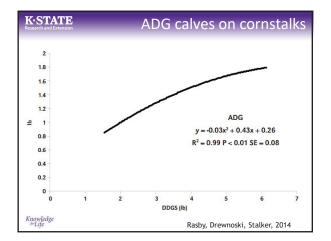

K-STATE Research and Extension	Hypothe	tical forage by tir	ne
70	1		20
60 -			- 18
50 -			- 16 - 14
40 -			- 12
30 -			- 10
			- 8
20 -			- 6 - 4
	COW CP req		- 2
0 STALK TDN	STALK CP Jan	Feb	0
Knowledge MrLife			

Strip grazing

- Strip grazing will increase the total grazing days
- Provides a more consistent diet to cows
- Set up strip sizes so that stocking rate will be equivalent to have cows consume 50% of residue within a week to two weeks
 - 5 cows (1400 lb)/acre for 1 week
 - 2 cows (1400 lb)/acre for 2 weeks

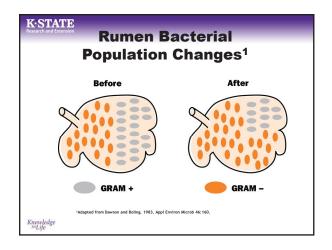
K·STATE Theory behind strip grazing

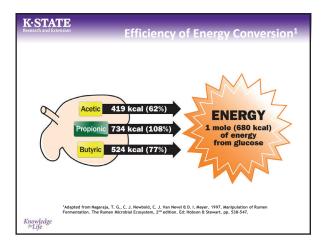
- Each time cows go to a new strip they will have access to a whole new area that will have grain and leaf-husk everyday
 - Won't be forcing cows to eat stalks
 - No dilution in quality due to eating stalks
- Nebraska data shows that there is about 1 bu/ac of grain left in field after harvest
 - 56 lbs corn/ac available
 - Corn really does not degrade
 - Less trampling so more likely to consume
- Keeps the total diet TDN and CP higher

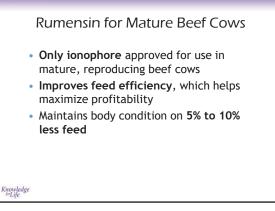


K-STATE Research and Extension	Hypothetical forage by time
20 _	
18 -	
16 -	
14 -	
12 -	
10 -	
8 -	
6 -	
4 -	
2 - COW CP req	STALK CP
0 Nov	c Jan Feb
Knowledge ™Life	Strip grazing

K-STATE Research and Extension	Cow and calf performance					
	Winter	Range	Corn Stalks			
ltem	No Supple	Supple	No Supple	Supple		
Cow BCS pre-calving	4.8	5.2	5.4	5.2		
Cow BCS weaning	5.1	5.2	5.2	5.1		
Calf BW, lbs	81	84	82	86		
Calf WW, lbs	495	543	539	517		
Carcass wt, lbs	785	827	816	810		
Choice, %	77	85	65	88		
Premium Choice, %	27	43	15	35		
Treated % birth-weaning	17	17	19	20		
Treated % wean-finish	12	0	11	3		
Knowledge ^{bri} Life	Knowledge Larson et al., 2009					


K-STATE Research and Extension	Grazing plan with cows
supplementa labor – strip g – Labor at \$12 • Every 2 wee	that requires the least amount of tion has the greatest amount of grazing or short duration grazing /hr (Shike, Faulkner, Ballard, U of I, 2008) eks estimated to add \$0.01/hd/d estimated to add \$0.02/hd/d
	ntinuous graze without hauling and/or energy use annual


			Treatmen	nt ¹					
		WR		C	R			Treatmen	nt P-val
Trait	PS		NS	PS	NS	SEM	Sys	5 SI	ирр
n	6	_	6	6	6	_	-		_
Calf birth date, Julian d Calf birth BW, lb	84		86	80	87	2 2.0	0.5		0.04 0.49
Calf weaning BW, lb	507		81	516	509	13	0.0		0.49
Adi, calf weaning BW, lb	478		54	478	485	9	0.0		0.15
Post-weaning ADG, lb	1.10)	1.08	1.06	1.10	0.11	0.1		0.72
Pre-breeding BW, lb	712	6	79	710	717	33	0.		0.24
Preg. diagnosis BW, lb	809	7	80	811	825	24	0.0)6	0.54
			Trea	tment ¹					
		v	VR	(CR	_	Trea	tment P-va	ıl
Trait		PS	NS	PS	NS	SEM	Sys	Supp	
n		6	6	6	6	_	_	_	_
Age at pubert		355	370	348	361	9	0.32	0.09	
BW at pubert	y, lb	615	619	626	635	24	0.50	0.72	
Kn Pubertal, %		91	74	79	84	7	0.71	0.38	
Pregnant, %		91	77	88	83	7	0.96	0.13	


			J	num Residue
	Con	BMR	SEM	Hybrid
Initial Wt, lb	530	526	2	0.19
Ending Wt, lb	597	618	4	< 0.01
ADG, lb	1.03	1.39	0.06	<0.01
2 years of data 6 steers/5.75 a)10 pp.40-41

K-STATE

EE

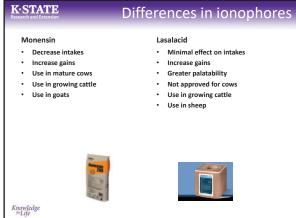
	Rumensin, mg/hd/d			
Item	0	50	200	
Number of cows	108	99	109	
Initial wt, lbs	1,063	1,050	1,049	
Final cow wt, lbs	1,016	1,006	1,010	
Wt. change, lbs	-47	-44	-39	
Feed intake (lbs DM/day/exp unit)				
0-171 days	164.2ª	155.7 ^b	146.4 ^b	
Percent of control	100	94.8	89.2	
Avg days on study at calving	124	123	125	
Days from calving to conception	93c	87 ^d	87 ^d	
Number of cows bred	99	93	100	
Number of cows conceived	90	86	97	
Percent conception	90.9	92.5	97.0	

K-STAT	E.					
	Rumensin	for Mat	ure Bee	ef Cows —		
		Rep	roducti	ve Safety ¹		
				2007 Trial		
		Monensin,	mg/hd/d			
		0	200			
	No. pastures ²	12	12			
	Conception date ³	161ª	155 [⊾]			
	Calf to conception, days	90 ^a	85 ^b			
	Calving percentage ⁴ (%)	80.7ª	91.9 ^b			
	^{a,b} Means within a row without a common superscript differ ($P < 0.01$).					
Knowledge ^{forLife}	¹ Bailey et al., 2007. Can. J. Anim. Sci. 88:113. ² Pasture was the experimental unit, and each p ³ Julian calendar date. ⁴ Logistic regression analysis.	asture contained 9 to	11 cow-calf pairs.			

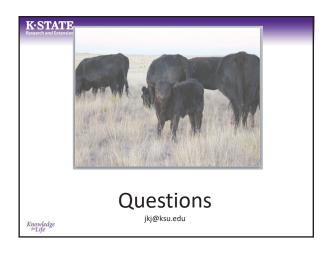
	Supple			
Item	CONT	MON	SEM ²	P-value ³
No.	28	28		
Initial BW, lbs	1082	1090	21	0.79
Initial BCS	5.15	5.21	0.10	0.70
Final BW, lbs	1117	1153	23	0.28
Final BCS	5.28	5.81	0.14	0.01
Change in BW	35.4	65.1	10.1	0.04
Change in BCS	0.13	0.57	0.12	0.01
ADG, lbs/day	.62	1.12	.18	0.04
¹ CONT = 36% CP cottonseed meal based pellet with 0 mg/hd of monensin; MON = 36% CP cottonseed meal based pellet with 200 mg/head of monensin.				

	Treatment			
	Aureomycin + Bovatec	Rumensin	SEM	
Mineral intake, oz/hd/d	4.22ª	2.39 ^b	0.01	
Feed Additive intake, mg/hd/d	325/186	105		
On-test stocker weight, lbs	583	582	4.1	
Off-test stocker weight, lbs	739	743	5.3	
90-day daily gain	1.73	1.79	0.06	

Estimated n	o observed effect le	vel (NOEL), toxic and lethal d	ose (mg/kg BW) ranges				
R		Toxic and lethal dose ranges, mg/kg BW					
Species	Parameter	Lasalocid	Monensin				
Cattle	NOEL	1.0	5 - 30				
	Toxic range	10 - 100	12 - 20				
	Lethal dose range	50 - 100	22.4 - 39.8				
	LD ₅₀		26.0				
Horses	NOEL						
	Toxic range	15 - 20					
	Lethal dose range	> 20	1 - 3				
	LD ₅₀	21.5	1.4				
Sheep	NOEL						
	Toxic range	45 - 60					
	Legal dose range	> 60					
	LD ₅₀		11.9				
Swine	NOEL						
	Toxic range	30 - 50	40 - 50				
1	Legal dose range	> 50					
1	LD ₅₀		16.7				


STATE	Summary
Ionophores are an effective tool for:	
 Improved feed efficiency 	
 Improved rate of gain in stockers 	
 Slight improvement in ADG in feedlot cattle 	

- Decreased feed intake (which may enhance the carrying capacity of cattle on a given quantity of forage)
- A potential protein sparing effect
- Increased digestibility of low quality forages
- Some reduction in the incidence of coccidiosis
- A decrease in the incidence of lactic acidosis
- Some reduction in the incidence of feedlot bloat
- Partial intake regulation in self feeding supplement systems
- Some reduction in the incidence of pulmonary emphysema


Knowledge ^{for}Life

.

K·STATE

